• Skip to main content

LabyrinthDesigners & the Art of Fire

Alchemy works translations, commentaries, and presentations of hidden evidence in myths, art, nature, science history, and even ancient sacred games

  • Introduction
  • Classical Alchemy
    • The State of the Art
    • Faqs
    • Opus Magnum Scheme
    • An Intriguing Case
    • Turba Philosophorum’s Ambition
    • Lexicon
  • The Sound Sacrifice
  • The Boards of Pure Force
  • Overall Navigation
    • Areas of Interest
    • Index of the Names
    • Search

Atorène: Fire and Weights in Canseliet’s Last Cooking

by Iulia Millesima

Canseliet dared to publish his secret correspondence to a friend on the whistles emitted by his Egg. Atorène, in “Le Laboratoire Alchimique” 1981, analyzes the musical proportions of the Egg densities, comparing them to a musical organ. The graphs are my work, for a better understanding.

Before analyzing this part of pure physics, Canseliet’s apprentice thought it essential to teach an entire course of music to Alchemists. In fact, the part presented here is only the conclusion of a long and detailed history of music, which he said was essential for trying to grasp what to expect from the philosopher’s egg.

To understand what we talking about, get a glance at the article which originated the whole: Canseliet, the Art of Music & Weight.

In short, every increase in weight corresponds to the emission of a whistle on a musical scale at 24h intervals. Here Atorène provides a detailed explanation of the phenomenon.

The Rhythms of the Universe

canseliet may 1951 philosophical vase table weights
May 1950 last cooking whistles emissions rate
atorene philosophical egg weights
weights of the philosophical vessel egg
atorene philosophical egg division by initial weights
Division by the initial weights
Atorène ratio of the subsequent philosophical egg weights
Atorène ratio of the subsequent philosophical egg weights

The figures that you will find turn out to be very close to Zarlino’s range, but we find the same figures in the theories of the world:

– for semitones (1.066) we have 1.0670 and 1.0622;

– for minor tones (1.1111): 1.1144  and 1.1113;

– for major tones (1.125): 1.1217 and 1.1247; doubling the tonic weight to close the octave, we have also: 1.1292;

– for minor third (1.200): weight 5/weight 3 = 1.20097; w1 x 2/w6 = 1.19956;

– for major third (1.250): w6/w1 = 1.25015; w6/w4 = 1.24999;

– for fourth (1.333): w4/w1 = 1.33394; w6/w3 = 1.33657; w7/w4 = 1.32772; w1 x 2/w5 = 1.33306;

– for fifth (1.500: w5/w1 = 1.50030; w6/w2 = 1.48633; w1 x 2/w4 = 1. 49932;

– etc. You will get new third and other intervals by doubling the eighth of the seven weights. Admitting up to five centigrams of absolute measurement error, you get a relative error of 4 per 100,000 of each tone, up to 3 per 10,000 eighths.

Undoubtedly, the differences between the ratios of the cooking and the Western music intervals can not be due to inaccuracies in weighing. And that even if the differences derive from contingent influences, such as an atmospheric disturbance. In any event, the alteration remains extremely small.

If one tries to place the results in a harmonic series out of curiosity, it is necessary, even in this case, to start from a fifth below the tonic. Here is a very close series:

Weight 1     W2       W3        W4            W5      W6      W7         W8?

   48/32     54/32  60/32    64/32     72/32  80/32  85/32    96/32;

series, which is derived from the following roundings:

48.0   53.842  60.005   72.014   80.025   85.013  –

rounding the group of third averages, fourth and fifth, mentioned above, and forming again the eighth, a for the accuracy is found the following values:

Weight 1   W2      W3      W4        W5         W6       W7       W8

    164.7   185.3   205.9    219.6   247.05   274.05    292.8   329.4

As weight 1 as the basis – as already measured before cooking – one will thus come to the theoretical series in grams:

Weight 1     W2       W3      W4      W5         W6     W7       W8

     164.7     185.3   205.9   219.6    247.05  274.5  292.8   329.4

One will get the same results with the harmonic scale, except the weight n. 7: 164.7 x 85/48 = 291.65. The equivalence with musical notes will then be:

Weight 1     W2       W3      W4      W5         W6      W7       W8

         do         re         mi        fa        sol          la      si flat      do

This range can be found all around the world: it is one of the ten Indian Thâta; or, among the Persian sects dastgâh, what is called rast-pandjgah; among the Arabs, between twelve main maquâmat, it bears the name of ouchaq.


Density Variations

When we have established comparisons, we were talking of weights: we have to distinguish between “measurements of weights” and “measurements of masses “, we focus on this point because if the mass increases, the volume does not vary.

In the chapter on the Transmutations ( Le Laboratoire Alchimique), we have seen that the transmutations are generally accompanied by a change in the mass of the order of ±20%.

Let’s call “V” the volume and “D” the density,” I “the index of the initial metal, and ” p ” that of the precious metal; according to Newtonian mechanics, one should expect the following relationship:

Vi Di = Vp Dp (mass conservation).

But, since the mass varies, we need to evaluate that VP – and this alone, at least as regards the gold – will be modified:

Vp = K V’ (where “K” is the coefficient of variation).

The variation thus will oscillate between the theoretical volume and the actual volume:

K = Vp / V’p

The association of the metal and the energy embodied in the Philosopher’s Stone seems to undergo a mysterious law of equilibrium. On the surface, everything happens as if the matter, in becoming royal, goes to achieve a certain “size”, like a vegetable.

In cooking, things go otherwise, and the phenomenon, always of relativistic order, appears even more strange if one can say so.

Remaining fixed on the volume observed, we say:

V x Di = V X Dn / In

being “i” the index of the first detection of weight; “n” that of detection of weight between 1 and 7; I is the interval of the degree “n”; “V” and “D” are, respectively, the volume and density.

It follows that:

In = Dn/ Di

In this case, it is the density that varies! It behaves like a wave.


The Degrees of Fire

symbola_aureae_fire

The student will observe the time intervals in this area, even small variations, and for the first time that of 22 minutes on 24 hours, that’s to say in minutes: 1440/1418: he will rebuild the process without difficulty, even what concerns the last parameter which we will discuss, or rather talk about: the temperature. Most authors have shrouded it in mystery, but Philalethes is sometimes generous. It is necessary, he tells us in his Rules:

 “… the degree of heat which can be obtained from the lead (327 °) or by the tin in the merger (232 °) … So give start to your degree of heat, for the kingdom where nature left you …”

The investigator who will not fail to read the works of Fulcanelli and Canseliet finds that the fourth degree indicates 340 for the second and 500 for the seventh.

It is only a question of scale, so the degrees of the Master of Savignies can be integrated into our system degree-gram by the relation:

T° G = T° Cans. x 2/3 * PA – 42.

His board of fire wheels can be inferred, even if you have a simple equation. For those who do not know how to count, here’s the development:

1° degree   310

2° degree   340

3° degree   370

4° degree   390

5° degree   435

6°  degree  475

7 degree    500

8° degree  555

And now, child of the science, ora, lege, relege, labora et invenies ( pray, read, re-read, work and discover).

The reference article in which Canseliet describes the phenomenon is Canseliet and the Art of Music and Weight. See also details of the last cooking Canseliet & the Details of the Last Cooking.

Atorène, Music Theory Course for Alchemists. Part 1.

See also Brouaut’s Frontispiece, the Organ Pythagorean Proportions;  Hieronymus Bosch and the Concert in the Egg  and Piero della Francesca and the Philosophical Pendent Egg , The Secret Night Chant of a Stradivarius Tree ;

Filed Under: Alchemic Authors 1833-X Tagged With: Ars Musicae, Atorène, Canseliet Eugène, Egg-Vessel, Sound, Sounds

  • Cookie Policy
  • Privacy Statement

Copyright © 2023 · Iulia Millesima · Hermolaos Parus

Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}